GMI: FUTURE DIRECTIONS???

"EVOLVING" ROLES/WORK OF GMI

- "Assessment" model incorporating "best" science, different approaches to evaluate uncertainty
 - High Speed Aircraft
 - IPCC
 - WMO
 - HTAP
 - We really have only considered different met. fields!
- "Test bed" for different approaches, algorithms, inputs determine uncertainty.
 - Again, mostly (only?) tested meteorological fields
 - Analyzed versus forecast winds
 - Comparison to data to "grade" approaches (winds)
 - Comparison for aerosols, CCN (also different parameterizations)
- Developed a combined stratospheric-tropospheric model that performs quite (very) satisfactorily in comparison to measurements
- MAP 08???

GMI SUCESSES AND "NEEDS IMPROVEMENT"

SUCCESSES

- Combo model
 - Good (great?) analysis tool for satellite measurements
 - Can help in improving satellite retrievals
 - Good tool for UT/LS
 - Chemistry being incorporated into chemistry-climate effort paradigm for CTM "testing" of chemistry-climate components.
 - Contributor to international assessment efforts
 - ESMF compliant
 - Good aerosol stand-alone, aerosol/cloud interaction
 - Simulations available to community
- Aerosol, cloud-chemistry
 - Uncertainties in loading, AOT, direct, indirect effect met. fields, parameterizations, emissions...

GMI SUCCESSES AND "NEEDS IMPROVEMENT" (II)

NEEDS IMPROVEMENT

- We did not get much out of the simulations with different met.
 fields for tropospheric composition (old fields)
- "Testbed" efforts limited, mostly met. fields; NOT COUPLED TO ASSESSMENT EFFORTS.
- Incorporation of new algorithms is sometimes slow (aerosol/chemistry coupling!)
- Only a few people actually run the model
- Still not at the forefront in the community's perception visibility.
- Limited resources (and they may get smaller!!!????)
- "Uncertainty" analysis not carried out within GMI structure (multi-model comparisons still reign supreme!).
- Community involvement.

GMI NEEDS TO CONNECT TO...

- Atmospheric composition
 - More satellite / aircraft /ground based analysis
 - Capitalize on combined troposphere-stratosphere
 - Satellite retrieval algorithms?
 - Mission planning?
 - Other meteorological fields??? (Would need point persons to take on specific problem, ingesting met. fields, supplementing fields with something like MATCH)
 - Air quality? (Fine resolution satellites adaptive grids?)
- Chemistry climate
 - Testbed: streamline chemistry, test other processes: wet/dry deposition, convective transport, emissions, future composition.
 - Strong link between atmospheric measurement and chemistry climate models
 - Aerosol microphysics, aerosol/cloud interactions AEROCOM
 - Couple to other Earth system models:
 - Ocean emissions
 - Land processes (hindcast).

GMI VS. CTMF (GEOS-5)

- Does it make sense for GMI to "migrate" to a CTMF?
- When we finish incorporating the chemistry into GEOS-5, we would really have included:
 - Chemical mechanism and solver
 - FastJx
 - Emissions
 - Lightning parameterization
 - Wet/dry deposition consistent with GEOS-5 archived variables (maybe even improved)
 - In summary, everything in GMI except for advection and column transport

GMI and GEOS 5: Advantages and Disadvantages of "Migration"

Advantages:

- GMI is ESMF compliant
- Leverage from developments/support in GEOS-5 (i.e., TPCORE)
- A good chunk of GEOS-5 will contain GMI
- Use both on-line and archived fields.
- Community accessibility to GEOS-5?
- Cheaper?

Disadvantages

- Software, diagnostics, analysis tools, etc. have been developed for GMI.
- Using other met. fields may be difficult (GEOS-5 incorporates formulation from other analyses, i.e., convective algorithm... tested?
- Learning curve
- Still needs vetting/ownership by GMI/CTM community

IGAC ATMOSPHERIC CHEMISTRY AND CLIMATE ACTIVITIES

- Wet Deposition Workshop: Rodriguez agreed to be "point person", Jacob and Nenes helping, plus everybody else.
- Activity No. 1: Atmospheric Hindcast. Point person?
- Activity No. 2: What controls aerosol/gas distribution between 5 km and tropopause. Point person: Penner? Rodriguez?
- Activity No. 3: Better representation of clouds, aerosols, and chemical interactions. Point person: Nenes?
- Activity No. 4: Sensitivities and uncertainties in future scenarios for climate models (in preparation for next IPCC) Point person: Prather?

GMI ACTIVITIES: KEEP, DO MORE, DO LESS, START, STOP: ASSESSMENT

	KEEP	DO MORE	DO LESS	START	STOP	SCIENCE?
НТАР	?					NEEDED EXPLORE NON-LIN.
IPCC		ON-LINE CHEMISTR Y		"CONNECT " TO OTHER MODELS		EVALUAT E FUTURE INCORPO RATE?
WMO		SAME				NEEDED
AIRCRAFT						NEEDED

GMI ACTIVITIES: KEEP, DO MORE, DO LESS, START, STOP: TEST BED ACTIVITIES

	KEEP	DO MORE	DO LESS	START	STOP	SCIENCE?
MET. FIELDS		x				ANALYZED
(BESIDES GEOS)						TRANSPORT CORE?
CHEMICAL		X				MORE HC
MECH.						PHOTLYSIS/CLO UDS
						SPATIAL REDUCT.
WET/DRY DEPOSITION	WORK SHOP					
EMISSIONS	x					UPDATE AS AVAILABLE – TRNEDS
MODEL						

GMI ACTIVITIES: OTHER / NEW?

	KEEP	DO MORE	DO LESS	START	STOP	SCIENCE?
SATELLITE DATA ANALYSIS		x				
SATELLITE RETRIEVAL						
MISSION PLANNING						
CHEMISTRY/ CLIMATE	х					
AIR QUALITY?			x			LEAVE TO RES. MODELS

GMI ACTIVITIES: AEROSOLS, CLOUDS

	KEEP	DO MORE	DO LESS	START	STOP	SCIENCE?
AEROSOL COMP.		X				
MICRO- PHYSICS		X				
CLOUDS		X				CLO\UD FRATION
AEROCOM					X	

GMI ACTIVITIES: MISCELLANEOUS

	KEEP	DO MORE	DO LESS	START	STOP	SCIENCE?
IGAC #1 HINDCAST		x				
IGAC #2 UPPER TROP.		x				
IGAC #3 AEROSOLS, CLOUDS	x					
IGAC #4 FUTURE SCENARIOS FOR CLIMATE		X				
GEOS-5 MIGRATION	x					

Steering Committee

- Meteorological field processing Do GEOS-4? Hindcast. How long?
 - How long will it take? Did Bob concatenate?
 - Hindcast a high priority.
 - MAP 08 initiative data sets, model calculations.
 - Includes aerosols.
 - EC fields?
 - MAP also to use other fields.
 - ERA 40 redone?
- Coupled chemistry-aerosols
 - Start with COMBO?
 - Simplify the chemistry / use GCM for stratosphere use forcings in bc, sst.;
 linoz. Fast COMBO.
- Deliver pieces to the Earth System Model: Build and test.
- Couplng of chemistry/dynamics / clouds
- Incorporate cloud/aerosol into standard GMI code Get somebody from GIT.

- Ice coupling.
- Aerosol cloud coupling into chemistry.
- Feedback of clouds, ice clouds into photolysis.
- Merge activity no. 2 into hindcast? Validation, data sets.
 - Aircraft is part of this.
- Chemical data assimilation?
- Inversion?